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Abstract

We set up a one-dimensional mathematical model with a Caputo fractional
operator of a drug released from a polymeric matrix that can be dissolved into a
solvent. A two moving boundaries problem in fractional anomalous diffusion
(in time) with order α ∈ (0, 1] under the assumption that the dissolving
boundary can be dissolved slowly is presented in this paper. The two-parameter
regular perturbation technique and Fourier and Laplace transform methods are
used. A dimensionless asymptotic analytical solution is given in terms of the
Wright function.

PACS numbers: 02.30.Jr, 02.60.Lj

1. Introduction

The research on the mathematical model of controlled release of drugs from a polymeric
matrix has been attracting more attention in the past decades. It is a typical moving boundary
problem or Stefan problem from the point of view of mathematics. A one moving boundary
problem only has a diffusing boundary if the matrix cannot be dissolved while a two moving
boundaries problem has both a dissolving boundary and a diffusing boundary because of the
dissolved matrix. The appearance of the moving boundary leads to nonlinearity and there are
very few exact solutions. The moving boundary problems with integer order have been widely
studied by many scientists [1].

If the time of release is very long, the diffusion processes usually no longer follow the
Gaussian theorem, and Fick’s second law fails to describe the related transport behavior, so the
fractional operators should be introduced [2–4]. In fact, more and more experience has proved
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that diffusion in a complex system cannot be described by Fick’s law. Instead, anomalous
diffusion is found in a wide diversity of systems, its hallmark being the nonlinear growth of
the mean-squared displacement in the course of time. As a special porous medium, the matrix
of the drug has a fractional dimension. Fractional calculus is a powerful tool for describing it
[5, 6].

Taking into account the effect of ultralong diffusion in the polymeric matrices, introducing
the fractional operators to the Fickian diffusion equation can describe the process more
accurately. Liu and Xu [7] first introduced a time-fractional diffusion equation with a one
moving boundary condition to a drug release process. An exact solution of a one-dimensional
mathematical model was given in that paper. The results given by them coincided with the
well-known Ritger–Peppas semi-empirical formula [8] in the controlled drug release system.
Li et al [9] used the space-time-fractional diffusion equation to describe the process of a solute
release from a polymeric matrix in which the initial concentration is greater than the solubility
of the drug and gave the exact solution in terms of the Fox-H function. But the space-fractional
derivative used in that paper is a Riesz derivative which would be inaccurate to model the
diffusion process in a finite domain from the point of Lévy flights. To overcome this problem
Li et al [10] used a Riemann–Liouville derivative and a Caputo derivative as space derivatives
of equations, respectively. They gave the similarity solutions in terms of a generalized Wright
function [11]. A comparison between the solutions corresponding to two types of fractional
derivative was also obtained in that paper.

All the research mentioned above is based on the one moving boundary problem. In
many cases, the polymer materials as drug matrices are the rate-limiting membrane. The
research on pharmacokinetics in dissolved matrices is useful for designing and prediction of
drug delivery systems. Furthermore, dissolved matrices based on polymer materials disappear
after implantation, and this is an important advantage for use in patients. The dissolving
boundary that dissolved slowly is based on the matrix of the drug, and it is a complex system
which can be described more accurately by fractional operators. The dissolved rate is slower
than the diffusion rate, so the kinetics of release is similar to the diffusion from non-dissolved
matrices. The condition that the dissolved rate is faster than the diffusion rate is not considered
in this paper.

In this paper, the problem of two moving boundaries with a Caputo fractional operator
with order α ∈ (0, 1] is studied. We assume that the matrix can be dissolved slowly (controlled
by the parameter η which will be mentioned in the paper) and the initial loading is greater
than the solubility of the drug (controlled by the parameter ε which will be mentioned in
the paper). The technique of two-parameter regular perturbation and Fourier and Laplace
transform methods are used. An asymptotic analytical solution is given in terms of the Wright
function. Some discussion is given at the end of the paper.

2. Mathematical model and governing equations

In order to solve the problem of two moving boundaries with fractional diffusion, the
mathematical model and the assumptions are given as follows:

• The polymer as a matrix can be dissolved slowly and is a one-dimensional slab;

• a perfect sink condition is assumed;

• the diffusivity D of the drug in the matrix is constant;

• the initial concentration C0 of the drug is much greater than the solubility Cs of the drug,
i.e. C0 � Cs .
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Figure 1. Profile of concentration.

The concentration profile at time t is shown in figure 1. We generalize Fick’s law to
describe this diffusion by using the tool of fractional calculus. The governing equation and
conditions are as follows:

C
0 Dα

t C(x, t) = D
∂2C

∂x2
(R(t) < x < S(t), 0 < α � 1) (1)

C(x, t) = 0 (x = R(t)), (2)

C(x, t) = Cs (x = S(t)), (3)

(C0 − Cs)
C
0 Dα

t S(t) = D
∂C

∂x

∣∣∣∣
x=S(t)

(t > 0), (4)

R(t) = S(t) = 0 (t = 0). (5)

Here C(x, t) is the concentration of drug in the matrix. S(t) is the position of the diffusing
boundary at time t. R(t) is the position of the dissolving boundary at time t. Condition (2)
is the perfect sink condition at x = R(t). Equation (4) is the mass balance equation at the
diffusion interface like energy conservation in heat transfer with phase transition, which is
known as the ‘Stefan condition’ [1] which is also used in the paper [7]. The Caputo fractional
derivative and integral operators are respectively defined in reference [12]:

C
0 Dα

t f (t) := 1

�(n − α)

∫ t

0

f (n)(τ )

(t − τ)α+1−n
dτ(n − 1 < α < n); (6)

C
0 D

−β
t f (t) := 1

�(β)

∫ t

0
(t − τ)β−1f (τ) dτ (0 < β < 1), (7)

where �(z) = ∫ ∞
0 e−t t z−1dt is the Gamma function.

The properties of the Caputo fractional derivatives can be found in [12, 13]. Three
important properties used in this paper are the following.

Property 1

C
0 Dα

t tμ = �(1 + μ)

�(1 + μ − α)
tμ−α, α > 0, μ > −1. (8)
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Property 2
C
0 Dα

t A = 0, α > 0, (9)

where A is a constant.

Property 3

L
{

C
0 Dα

t f (t);p
} = pαF(p) −

n−1∑
k=0

pα−k−1f (k)(0), n − 1 < α � n. (10)

Property 3 is the Laplace transform of the Caputo derivative.

3. The asymptotic solution of the problem

The equation and conditions can be considerably simplified if we introduce the following
dimensionless variables:

θ(x, t) = C(x, t)

Cs

, t∗ =
(

D

L2

) 1
α

t, ε = Cs

C0
,

R∗(t∗) = R(t)

L
, S∗(t∗) = S(t)

L
, x∗ = x

L
,

where ε ∼ o(1) from the fourth assumption is the ratio of solubility Cs and initial concentration
C0 and L is the lengthscale.

For convenience, the mark ‘∗’ will be omitted in the rest of the paper and equations (1)–(5)
become

C
0 Dα

t θ(x, t) = ∂2θ

∂x2
(R(t) < x < S(t), 0 < α � 1), (11)

θ(x, t) = 0 (x = R(t)), (12)

θ(x, t) = 1 (x = S(t)), (13)

(ε−1 − 1) C
0 Dα

t S(t) = ∂θ

∂x

∣∣∣∣
x=S(t)

(t > 0), (14)

R(t) = S(t) = 0 (t = 0). (15)

We introduce the new dimensionless independent space-time variables:

y = x − R(t), X(t) = S(t) − R(t). (16)

From the first assumption, we have

R(t) = ηt, η ∼ o(1), (17)

where η means the dimensionless moving velocity of the dissolving boundary.
Inserting (16) and (17) into C

0 Dα
t θ(x, t), we obtain

C
0 Dα

t θ(x, t) = 1

�(1 − α)

∫ t

0
(t − τ)−α ∂θ(x, τ )

∂τ
dτ

= 1

�(1 − α)

∫ t

0
(t − τ)−α

[
∂θ(y, τ )

∂τ
+

∂θ(y, τ )

∂y

∂y

∂τ

]
dτ

= C
0 Dα

t θ(y, t) − η
1

�(1 − α)

∫ t

0
(t − τ)−α ∂θ(y, τ )

∂y
dτ

= C
0 Dα

t θ(y, t) − η
∂

∂y

C
0 Dα−1

t θ(y, t).

4



J. Phys. A: Math. Theor. 42 (2009) 115210 C Yin and M Xu

Considering the new space-time variables, equations (11)–(15) become

C
0 Dα

t θ(y, t) − η
∂

∂y

C
0 Dα−1

t θ(y, t) = ∂2θ(y, t)

∂y2
(0 < y < X(t)), (18)

θ(y, t) = 0 (y = 0), (19)

θ(y, t) = 1 (y = X(t)), (20)

(ε−1 − 1)

[
C
0 Dα

t X(t) + η
t1−α

�(2 − α)

]
= ∂θ

∂y

∣∣∣∣
y=X(t)

(t > 0), (21)

X(t) = 0 (t = 0). (22)

The equations have the form of a one moving boundary problem after introducing the new
variables.

Because the dimensionless parameters η and ε are smaller than one, we use the two-
parameter regular perturbation method to solve the equations. We assume that the solutions
of the equations can be given as follows:

θ(y, t; η, ε) = θ0(y, t) + θ1(y, t)η + θ2(y, t)ε + · · · , (23)

X(t; η, ε) = X0(t) + X1(t)η + X2(t)ε + · · · . (24)

Substituting (23) and (24) into (18)–(22), we arrive at

C
0 Dα

t θ0(y, t) + η C
0 Dα

t θ1(y, t) + ε C
0 Dα

t θ2(y, t) − η
∂

∂y

C
0 Dα−1

t θ0(y, t) · · ·

= ∂2θ0

∂y2
+ η

∂2θ1

∂y2
+ ε

∂2θ2

∂y2
· · · , (25)

θ0(y, t) + ηθ1(y, t) + εθ2(y, t) · · · = 0 (y = 0), (26)

θ0(y, t) + ηθ1(y, t) + εθ2(y, t) · · · = 1 (y = X(t)), (27)

(1 − ε)

[
C
0 Dα

t X0(t) + η C
0 Dα

t X1(t) + η
t1−α

�(2 − α)
· · ·

]

= ε

[
∂θ0

∂x
+ η

∂θ1

∂x
+ ε

∂θ2

∂x
+ · · ·

] ∣∣∣∣
x=X(t)

, (28)

X0(t) + ηX1(t) + εX2(y, t) · · · = 0 (t = 0). (29)

By comparison with the same orders of ηnεm (n = 0, 1, . . . ; m = 0, 1, . . .) of both sides of
equations (25)–(29), we can obtain the perturbation equations of different orders. The zero-
order equations corresponding to the term η0ε0 are as follows:

C
0 Dα

t θ0(y, t) = ∂2θ0(y, t)

∂y2
(0 < y < X(t)), (30)

θ0(y, t) = 0 (y = 0), (31)

θ0(y, t) = 1 (y = X(t)), (32)
C
0 Dα

t X0(t) = 0 (t > 0), (33)

X0(t) = 0 (t = 0). (34)
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The one-order equations corresponding to the terms η1ε0 and η0ε1 are

C
0 Dα

t θ1(y, t) − ∂

∂y

C
0 Dα−1

t θ0(y, t) = ∂2θ1(y, t)

∂y2
(0 < y < X(t)), (35)

θ1(y, t) = 0 (y = 0), (36)

θ1(y, t) = 0 (y = X(t)), (37)

C
0 Dα

t X1(t) +
t1−α

�(2 − α)
= 0 (t > 0), (38)

X1(t) = 0 (t = 0), (39)

and

C
0 Dα

t θ2(y, t) = ∂2θ2(y, t)

∂y2
(0 < y < X(t)), (40)

θ2(y, t) = 0 (y = 0), (41)

θ2(y, t) = 0 (y = X(t)), (42)

C
0 Dα

t X2(t) − C
0 Dα

t X0(t) = ∂θ0

∂y

∣∣∣∣
y=X(t)

(t > 0), (43)

X2(t) = 0 (t = 0), (44)

respectively.
Using the method used in paper [7] and property 2, the solutions to equations (30)–(34)

are given as follows:

θ0(y, t) = H0

[
1 − W

(
− y

tα/2
;−α

2
, 1

)]
, (45)

X0(t) = 0, (46)

where H0 is a constant to be determined in the following part of the paper and W(z;α, β) is
the Wright function defined as [14]

W(z;α, β) =
∞∑

k=0

zk

k!�(αk + β)
, α > −1, β ∈ C. (47)

We insert (45) into ∂
∂y

C
0 Dα−1

t θ0(y, t) and obtain

∂

∂y

C
0 Dα−1

t θ0(y, t) = −H0
∂

∂y

C
0 Dα−1

t W

(
− y

tα/2
;−α

2
, 1

)

= −H0
∂

∂y

C
0 Dα−1

t

∞∑
k=0

(yt−α/2)k

k!�
(− α

2 k + 1
)

= −H0

∞∑
k=0

(−1)k

k!�
(−α

2 k + 1
) ∂

∂y
yk C

0 Dα−1
t t−

α
2 k

= H0

∞∑
k=1

(−yt−
α
2
)k−1

t1− 3α
2

(k − 1)!�
(− α

2 (k − 1) + 2 − 3α
2

)
= H0t

1− 3α
2 W

( −y

tα/2
;−α

2
, 2 − 3α

2

)
. (48)
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Substituting (48) into equation (35), we have

C
0 Dα

t θ1(y, t) − H0t
1− 3α

2 W

( −y

tα/2
;−α

2
, 2 − 3α

2

)
= ∂2θ1(y, t)

∂y2
. (49)

Taking the Laplace transform of (49) in the time domain yields

pαθ̃1(y, p) − H0p
3α
2 −2 exp

(−yp
α
2
) = ∂2θ̃1

∂y2
. (50)

Then taking the Fourier transform of (50) in the space domain we arrive at

(pα + k2)̂̃θ1(k, p) = 2H0
p2α−2

pα + k2
, (51)

where p and k are variables of Laplace and Fourier transforms, respectively.
From (51) we get the solution

̂̃θ1(k, p) = 2H0p
2α−2

(pα + k2)2
. (52)

Using the inverse Fourier and Laplace transforms, we have

θ1(y, t) = πH0

2
yt1−αW

( −y

tα/2
;−α

2
, 2 − α

)
+

πH0

2
t1−α/2W

( −y

tα/2
;−α

2
, 2 − α

2

)
. (53)

For X1(t), we have the equation

C
0 Dα

t X1(t) +
t1−α

�(2 − α)
= 0. (54)

By using property 1, the solution is

X1(t) = −t. (55)

To solve equation (40) with conditions (41)–(44), using the same method used to obtain θ0,
we have

θ2(y, t) = H1

[
1 − W

(
− y

tα/2
;−α

2
, 1

)]
, (56)

where H1 is also a constant to be determined in the following part of the paper.
Because θ0 was given in (45), we have

∂θ0

∂y
= H0t

−α/2W

( −y

tα/2
;−α

2
, 1 − α

2

)
. (57)

Inserting (57) into equation (43), we obtain

C
0 Dα

t X2(t) − C
0 Dα

t X0(t) = H0t
−α/2

�(1 − α/2)
, (58)

and its solution is

X2(t) = H0t
α/2

�(1 + α/2)
. (59)

So the asymptotic solutions to the governing equations are

θ(y, t; η, ε) = θ0(y, t) + θ1(y, t)η + θ2(y, t)ε + · · · , (60)

X(t; η, ε) = X0(t) + X1(t)η + X2(t)ε + · · · , (61)

where θ0, θ1, θ2 . . . and X0, X1, X2 . . . have been obtained.
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Figure 2. The dimensionless diffusion interface S(t) versus dimensionless time t with different α.

4. Discussion

Considering the special case (η = 0), the problem of two moving boundaries becomes the one
moving boundary problem discussed in [7]. Using the same method, we obtain

H = 1

1 − W
(−q;−α

2 , 1
) ,

H = q�
(
1 + α

2

)(
ε−1 − 1

)
�

(
1 − α

2

)
W

(−q;−α
2 , 1 − α

2

) ,

(62)

where H and q are determined by the equations above, and q is the dimensionless velocity of
the diffusion interface

S(t) = q · tα/2. (63)

Figures 2 and 3 show how the rate of difusion interface varies with t. From figure 2, the
diffusion interface will run faster if α increases. From figure 3, the diffusion interface will run
faster if ε increases. The parameter α can be controlled by using different polymer matrices,
while the parameter ε can be controlled by using different loading drugs. We can control drug
release by varying the two parameters.

Expanding H in a power series of ε, we obtain

H = H0 + H1ε · · · . (64)

So the constants H0,H1 . . . are determined, and so we can know the asymptotic solution from
(61):

Hε = H0ε + H1ε
2 + · · ·

= q�
(
1 + α

2

)
(1 − ε)

�
(
1 − α

2

)
W

(−q;−α
2 , 1 − α

2

) , (65)
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Figure 3. The dimensionless diffusion interface S(t) versus dimensionless time t with different ε.
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Figure 4. The comparison between the exact solution and the asymptotic solution (when α = 0.5).
Curves 1, 3, 5 correspond to the exact solution when ε = (0.05, 0.01, 0.001) and curves 2, 4, 6
correspond to the asymptotic solution when ε = (0.05, 0.01, 0.001), respectively.

S(t) = X(t) ≈ H0ε

�(1 + α/2)
· tα/2

≈ q(1 − ε)

�
(
1 − α

2

)
W

(−q;−α
2 , 1 − α

2

) · tα/2 (ε = o(1)). (66)

Figure 4 shows the comparison between the exact solution and the asymptotic solution. When
ε is determined, the asymptotic solution curve runs faster than the exact solution curve, and
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the difference between the exact solution and the asymptotic solution become smaller when ε

decreases.
Considering the dissolving boundary condition, we have the position of two moving

boundaries:

R(t) = ηt, (67)

S(t) = X(t) + R(t)

= X0(t) + X1(t)η + X2(t)ε + ηt + · · ·
= H0t

α/2

�(1 + α/2)
ε + · · · . (68)

Because the dissolved rate is very slow, it cannot obviously influence the diffusion interface
and the rate of diffusion interface would be the main factor of drug release. Although the
smaller ε can make the exact solution and asymptotic solution closer, it makes the diffusion
interface run slower, too. If the dissolved interface runs faster than the diffusion interface,
the dissolved rate of the matrix would be the main factor of drug release and another method
should be used.

5. Conclusion

For moving boundary problems, very few analytical solutions are available in closed form
[1]. Some scientists have researched the one moving boundary with fractional operators and
obtained some exact solutions. In this paper, we set up the mathematical model of a two
moving boundaries problem in fractional diffusion and an asymptotic solution is given by
means of the two-parameter regular perturbation technique. But our model is according to the
assumption that the dissolving boundary is dissolved very slowly. If the dissolving boundary
moves fast or the matrix can swell, our solution cannot be used and a new method must be
developed to solve the new problem.

Fractional calculus is a powerful tool for researching the ultralong diffusion process. Our
research can be a type of method to obtain the asymptotic solution. The perturbation has been
used to solve the moving boundary problem with integer order [15, 16] and we prove that it
can also be used in the fractional moving boundary problem.
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